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I. THE MACROSCOPIC QUANTUM MODEL OF SUPERCONDUCTIVITY

The key statement is the following: Superconductivity is inherently a quantum mechanical phenomenon
that manifests itself on macroscopic scales. Given this, we now develop a macroscopic quantum model to
”explain” superconducting phenomena, especially those associated with the third hallmark of supercon-
ductivity. Note that we do this before developing the microscopic theory of superconductivity. However,
many of the results derived here also hold up for the microscopic case.

A. Review of relevant concepts from Quantum Mechanics

Review of Basic Quantum Mechanics for single particles:

Time-dependent Schrodinger equation: i~∂ψ∂t = − ~2

2m∇
2ψ + V (~r)ψ

Probability amplitude for finding the particle: P (~r, t) := ψ∗(~r, t)ψ(~r, t)
Normalization condition on the wavefunction:

∫
P (~r, t)dV =

∫
ψ∗(~r, t)ψ(~r, t)dV = 1 for all time t.

Probability current: ~Jprob = ~
i2m (ψ∗~∇ψ − ψ~∇ψ∗) = Re[ψ∗ ~

im
~∇ψ]. Note that ~Jprob has dimensions of

inverse time.
Continuity equation for probability density: ∂P

∂t = −~∇ · ~Jprob
Charged particle under the influence of electric and magnetic fields, with associated scalar and vector

potentials: ~B = ~∇ × ~A and ~E = −~∇φ − ∂ ~A
∂t . The canonical momentum is the sum of the kinematic

momentum and electromagnetic momentum: m~v + q ~A.

Schrodinger equation including φ and ~A: i~∂ψ∂t = 1
2m (~

i
~∇− q ~A)2ψ + qφψ

Probability current including electromagnetic momentum q ~A: ~Jprob = Re[ψ∗( ~
im
~∇− q

m
~A)ψ].

B. Macroscopic Quantum Treatment of Superconductors

Hypothesis: There exists a macroscopic quantum wavefunction Ψ(~r, t) that describes the behavior of
the entire ensemble of super-electrons in the superconductor.
Here Ψ(~r, t) is a field-like quantity that describes the coherent behavior of the super-electrons.
Normalization constraint for the Macroscopic Quantum Wave Function (MQWF):

∫
Ψ∗(~r, t)Ψ(~r, t)dV =

N∗, where N∗ is the total number of super-electrons that the MQWF describes. Note that ∗ is NOT
complex conjugation here (N is real)!

Therefore, the local density of super-electrons is Ψ∗(~r, t)Ψ(~r, t) = n∗(~r, t). Note that |Ψ(~r, t)|2 is no
longer a probability but in fact describes the location of a sub-set of all of the super-electrons.

Thus the flow of probability ~Jprob now describes an actual flow of particles, or a true physical current.

We can write the super-current density as ~Js = q∗Re
{

Ψ∗
(

~
ım∗ ~O− q∗

m∗
~A
)

Ψ
}

. We take the super-

electrons to have charge q∗, mass m∗, and density n∗, all real quantities.
In polar format, we expect the MQWF to be of the form Ψ(~r, t) =

√
n∗(~r, t)eıθ(~r,t), where n∗ = Ψ∗Ψ

and θ (~r, t) is a real phase factor. Putting this version of Ψ in to the current density expression, we find
~Js = q∗n∗ (~r, t)

(
~
m∗ ~Oθ (~r, t)− q∗

m∗
~A (~r, t)

)
. (What happened to the ∇n∗ term? It disappeared when you

take the Real part of the expression!)

Or, using ~Js (~r, t) = n∗ (~r, t) q∗~vs, we can write for the super-fluid velocity ~vs = ~
m∗ ~Oθ (~r, t)− q∗

m∗
~A (~r, t).

Hence the (measurable) superfluid current density is related to the gradient of the phase of the MQWF
and the vector potential, neither of which can be directly measured!

The vector potential reproduces the (measurable) magnetic field ~B through its curl ~B = ~O× ~A, but it
can be modified by the gradient of any real scalar function of position and produce the same magnetic

field: ~A → ~A′ = ~A + ~Oχ. This flexibility in gauge choice also constrains the MQWF phase through

θ → θ′ = θ + q∗

~ χ. With this change of gauge one can show that the supercurrent density ~Js (~r, t) is
gauge invariant.
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C. Generalized London relation

Taking m∗ = 2m, q∗ = −2e and n∗ = n/2 one can see that Λ∗ = Λ! This allows us to write the
generalized London relation as follows

Λ ~Js = ~
q∗
~Oθ − ~A.

Taking the curl of both sides gives the second London equation. Note that the ”quantum mechanics”
drops out when the curl is taken!
Taking the time derivative of both sides of the London relation gives the first London equation once the
phase of the MQWF is interpreted as an energy and the gradient gives the electric field derived from the
electric potential φ, with the gauge change φ→ φ′ = φ− ∂χ/∂t.

D. Fluxoid Quantization

Consider a closed contour C that is entirely within a superconductor. Integrate the generalized London
relation around this contour:∮
C

(
Λ ~Js

)
· d~l = ~

q∗

∮
C
~Oθ · d~l −

∮
C
~A · d~l

We can use Stoke’s theorem on the last term (only). This last term yields the magnetic flux through any

surface S that terminates on the contour C:
∮
C
~A · d~l =

∫∫
S
~O× ~A · d~S =

∫∫
S
~B · d~S = ΦS .

Why not apply Stoke’s theorem to the other two terms? Because the MQWF and ~Js are not defined
outside of the superconductor! Hence it makes no sense to look at the flux of these quantities through
surfaces that are outside of the superconductor.
The middle term is the integral of the gradient of the phase of the MQWF. With careful analysis noting

the 2π ambiguity of the phase, one finds that the integral becomes: ~
q∗

∮
C
~Oθ · d~l = ~

q∗ 2πp, where p can

be any positive or negative integer, or zero.

Now we have:
∮
C

(
Λ ~Js

)
·d~l+

∫∫
S
~B ·d~S = h

q∗ p. This is a statement of ”fluxoid quantization”. The left

hand side of the equation is the fluxoid, and the right hand side is a special combination of fundamental
constants known as the flux quantum, Φ0 = h/2e where h is Planck’s constant and e is the electronic
charge. The factor of 2 was put in by hand here, but it is the value seen in experiments on trapped flux
in superconductors.

Note that only in the case where the contour C is chosen in such a way that the current contour
integral is zero do you have the special case of ”flux quantization,” Φ = pΦ0. One way to do this is
to have a multiply connected superconductor in which C is chosen deep inside the superconductor such
that Js = 0 there. Then the flux through any surface S that terminates on C will be quantized in units
of Φ0.

The class web site shows data for the trapped flux in a superconducting cylinder as a function of
applied magnetic field. The discrete steps in magnetic moment of the trapped flux is a clear sign of flux
quantization.

How does a superconducting loop maintain a quantized value of magnetic flux when it is subjected to
an arbitrary amount of classical flux? The answer is that it adjusts the screening currents circulating in
the loop to keep the overall flux quantized. The total flux is the sum of the externally-applied flux and
the ’self flux’ created by the superconducting loop: ΦTotal = Φapplied−LI, where L is the self-inductance
of the loop and I is the superconducting circulating current. It is this total flux that is quantized in
units of Φ0. This is a ’circuit version’ of fluxoid quantization. It is used frequently in the literature,
but I find it rather sloppy. It is better to use the fields and currents version of the fluxoid quantization
condition, in my opinion.

The final Feynman lecture on Physics was a seminar on the macroscopic quantum model of super-
conductivity and flux quantization, among other things. It has some very interesting insights about
quantum mechanics and superconductivity.

One other note about fluxoid quantization. The argument sketched above is based on the description of
the macroscopic quantum wavefunction in terms of a complex function of space and time. This is certainly
valid for most superconductors. However, there exist some superconductors (as well as 3He) that are
described by more complicated order parameters, including vector or tensor quantities, rather than just a
complex function. Fluxoid quantization is not satisfied, in general, for these types of superconductors. For
further discussion, see James Annett, Superconductivity, Superfluids and Condensates, Oxford University
Press, 2004, p. 158.

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring22/Lecture%204%20Slides.pdf
https://www.feynmanlectures.caltech.edu/III_21.html
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